Spectral correction to recover full 10min variability from hourly mesoscale data

Presenter: Lasse Svenningsen (ls@emd.dk)
Co-authors: Bo H. Jacobsen (AAU)
Morten L. Thøgersen (EMD)
Motivation

Mesoscale models play increasing role in resource assessment
But mesoscale data are NOT measured 10min data
Can mesoscale data be used as is directly in energy assessments?
Contents

- Intro - Spectrum of wind variability
- Problem - too smooth mesoscale data
- Solution - correct and extrapolate spectrum
- Results
- Conclusion
Contents

- Intro - Spectrum of wind variability
- Problem - too smooth mesoscale data
- Solution - correct and extrapolate spectrum
- Results
- Conclusion
Spectrum of wind variability

Wind varies on a wide range of spatial and temporal scales

- Wind data: 10min averages

From: http://apollo.lsc.vsc.edu/classes/met130/
Wind varies on a wide range of spatial and temporal scales

- Wind data: 10min averages
- Main scales 10min - 1 year:
 - Global scale \((7 - 365\) days)
 - Synoptic scale \((2 - 7\) days)
 - Mesoscale \((\frac{1}{24} - 2\) days)
 - (Microscale) \((< \frac{1}{24} \) days)

Stull (2000) and Fiedler (1970)

From: http://apollo.lsc.vsc.edu/classes/met130/
Why is the wind variance important?

- Wind power is proportional to wind speed cubed: \(P \propto u^3 \)
- Increased variance means more power (at same average wind speed)
- Mean wind speed is also important – but not the focus of this study
What does a wind speed spectrum look like?
What does a wind speed spectrum look like?

- Wind measurements - Cabauw mast (3 years, 80m agl):
- “Raw” FFT (variance contribution of each frequency bin)
What does a wind speed spectrum look like?

- Wind measurements - Cabauw mast (3 years, 80m agl):
- “Raw” FFT (variance contribution of each frequency bin)
What does a wind speed spectrum look like?

- Wind measurements - Cabauw mast (3 years, 80m agl):
- “Smoothed” FFT
What does a wind speed spectrum look like?

- Wind measurements - Cabauw mast (3 years, 80m agl):
- Linear trend (log-log), $f > 1$ days$^{-1}$

\[
\alpha \approx -\frac{5}{3}
\]

\[\text{e.g. Xiaoli (2012)}\]
Spectrum of wind variability

Relation between spectrum and variance?

- Variance = integral of $S(f)$ for all f

\[\sigma^2 = \int_{f_{\text{min}}}^{f_{\text{max}}} S(f) df \]
Relation between spectrum and variance?

- Variance = integral of $S(f)$ for all f
 \[\sigma^2 = \int_{f_{\text{min}}}^{f_{\text{max}}} S(f) df \]
- Cumulative Spectrum = integral of $S(f)$ up to f_0
 \[\sigma_{\text{cum}}^2 (f_0) = \int_{f_{\text{min}}}^{f_0} S(f) df \]

Spectrum of wind variability
Spectrum of wind variability

Relation between spectrum and variance?

- Variance = integral of $S(f)$ for all f
- Cumulative Spectrum = integral of $S(f)$ up to f_0

\[
\sigma^2 = \int_{f_{min}}^{f_{max}} S(f) df
\]

\[
\sigma_{cum}^2 (f_0) = \int_{f_{min}}^{f_0} S(f) df
\]
Spectrum of wind variability

Relation between spectrum and variance?

- Variance = integral of $S(f)$ for all f
- Cumulative Spectrum = integral of $S(f)$ up to f_0

\[\sigma^2 = \int_{f_{\text{min}}}^{f_{\text{max}}} S(f) df \]

\[\sigma_{\text{cum}}^2(f_0) = \int_{f_{\text{min}}}^{f_0} S(f) df \]

Note: No smoothing applied!
Just integration
Contents

- Intro - Spectrum of wind variability
- **Problem** - too smooth mesoscale data
- Solution - correct and extrapolate spectrum
- Results
- Conclusion
The problem

Mesoscale model problems – time domain

- Model data too smooth compared to measurements
The problem

Mesoscale model problems – time domain

- Model data too smooth compared to measurements
- Model data (often) sampled hourly, but measurements 10min
The problem

Mesoscale model problems – frequency domain (spectrum)

- Problem 1: Spectrum may have too high damping at high frequencies
Mesoscale model problems – frequency domain (spectrum)

- Problem 1: Spectrum may have too high damping at high frequencies
- Problem 2: Spectrum does not cover highest frequencies (if hourly sampled)
Mesoscale model problems – frequency domain (spectrum)

- Problem 1: Spectrum may have too high damping at high frequencies
- Problem 2: Spectrum does not cover highest frequencies (if hourly sampled)
- Problem 3: Spectrum may have errors in ‘main ranges’ (meso, synoptic, global)
Contents

- Intro - Spectrum of wind variability
- Problem - too smooth mesoscale data
- **Solution** - correct and extrapolate spectrum
- Results
- Conclusion
The solution

Solution 1: Correct damping of highest frequencies

- Apply ‘inverse’ damping filter’
 (Note: not required for all mesoscale data/models, e.g. ‘EMD-WRF EUR+ (ERA5)’)
The solution

Solution 1: Correct damping of highest frequencies
Solution 2: Extrapolate spectrum to recover high frequencies
 ▪ Utilize linear nature (in log-log) to extrapolate to 10min
The solution

Solution 1: Correct damping of highest frequencies
Solution 2: Extrapolate spectrum to recover high frequencies
Solution 3: Correct shape of spectrum in main ranges
 ▪ Correct the amount of variance in each main range
The solution

Example (time domain)

- Obs: Cabauw Vs Mod: EMD-WRF Europe+ Vs Mod+Cor. 2+3 (cor. 1 not needed)
Example (time domain)

- **Obs: Cabauw** Vs **Mod: EMD-WRF Europe+** Vs **Mod+Cor. 2+3 (cor. 1 not needed)**

The solution
The solution

Example (cumulative spectrum)

- **Obs: Cabauw** Vs **Mod: EMD-WRF Europe+** Vs **Mod+Cor. 2+3 (cor. 1 not needed)**
Contents

- Intro - Spectrum of wind variability
- Problem - too smooth mesoscale data
- Solution - correct and extrapolate spectrum
- Results
- Conclusion
What is the effect of spectral correction?

- 8 masts from 100km offshore to 100km onshore (2-8 years)
- Errors quantified relative to corrected data to focus on spectral effects
- Hence, errors on mean wind speed are avoided
What is the effect of spectral correction?

- Error on total variance (if uncorrected):
What is the effect of spectral correction?

- Error on total variance (if uncorrected):

- Ca. -5% offshore
- Up to +28% onshore
What is the effect of spectral correction?

- Error on total energy $\langle u^3 \rangle$ (if uncorrected):

```plaintext
<table>
<thead>
<tr>
<th>Offshore</th>
<th>Distance to coast [km]</th>
<th>Onshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error if uncorrected [%]</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
```

Results
What is the effect of spectral correction?

- Error on total energy $\langle u^3 \rangle$ (if uncorrected):

 AEP error ca. 20-50% of total energy error

- Total energy $\langle u^3 \rangle$ error:
 - Ca. -3% offshore
 - Up to +10% onshore

- AEP error:
 - Ca. 1% offshore
 - Up to 5% onshore
Contents

- Intro - Spectrum of wind variability
- Problem - too smooth mesoscale data
- Solution - correct and extrapolate spectrum
- Results
- Conclusion
Conclusion

Spectrum of mesoscale data - summary

Problems:
- 1) Mesoscale data may be dampened too much for $f > 1 \text{ day}^{-1}$
- 2) Mesoscale data mostly sampled hourly
- 3) Mesoscale data may have erroneous variance in ‘main ranges’
Spectrum of mesoscale data - summary

Problems:
- 1) Mesoscale data may be dampened too much for $f > 1 \text{ day}^{-1}$
- 2) Mesoscale data mostly sampled hourly
- 3) Mesoscale data may have erroneous variance in ‘main ranges’

Presented solutions:
- 1) Correct damping by applying ‘inverse damping filter’
- 2) 10min samples recovered by extrapolating spectrum (linear in log-log)
- 3) Re-shape amount of variance in main ranges

Conclusion
Conclusion

So can mesoscale model data be used as is for AEP?
Conclusion

So can mesoscale model data be used \textit{as is} for AEP?

- \textbf{onshore}:
 - \textbf{No} - spectral errors result in up to 28% error on variance and up to 5% on AEP
 - Full spectral correction recommended
So can mesoscale model data be used as is for AEP?

- **onshore:**
 - No - spectral errors result in up to 28% error on variance and up to 5% on AEP
 - Full spectral correction recommended

- **offshore:**
 - Yes – spectral errors result in up to 5% error on variance and up to 1% on AEP
 - But solution 2 is recommended to recover 10min data for consistency with 10min measurements
Thanks for the attention!

Title: Spectral correction to recover full 10min variability from hourly mesoscale data

Presenter: Lasse Svenningsen (ls@emd.dk)
EMD International A/S